Unifying Feature-Based Explanations with

Functional ANOVA and Cooperative Game Theory

Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer, and Julia Herbinger

Disagreement and fragmented landscape of feature-based explanations: Interpretation and comparison of PROBLEM feature-based explanations are unclear leading to confusion among practitioners.

Existing frameworks are limited by focusing on local [1] or global explanations [2,3], specific methods [4-6] or influences of single features [7].

Imputation Methods for Perturbation

Value Function $F_S(x) := \int F(x) \, dP(x_{-S})$

Probability Distribution P determines Imputation

- Baseline: baseline value $F(x_S, b_{-S})$
- $\mathbb{E}[F(x_S, X_{-S})]$ • Marginal: background data
- Conditional: realistic data $\mathbb{E}[F(X) \mid X_S = x_S]$

- **User Guide**
- 1. Explanation game: local vs. global?
- 2. Explanation Type: individuals, groups (**joint**), or synergies (interaction)?
- 3. Imputation: feature distribution not (**baseline**), partially (**marginal**), or fully (**conditional**) captured?
- 4. Higher-order interactions: No (pure), partial, or full influence of higher-order interactions?

Global Functional Decomposition via fANOVA

fANOVA effect $f_S(x) = F_S(x) - \sum_{T \subset S} f_T(x)$

yields $F(x) = f_{\emptyset} + \sum_{i=1}^d f_i(x_i) + \sum_{i
eq j} f_{ij}(x_i, x_j) \cdots = \sum_{S \subseteq D} f_S(x)$

Imputation Changes Influence of Feature Distribution

 $F_{ ext{lin}}(x) = eta_1 x_1 + eta_2 x_2 \qquad F_{ ext{2int}}(x) = eta_1 x_1 + eta_2 x_2 + eta_{12} x_1 x_2$

		b-fANOVA $f^{(b)}$	m-fANOVA $f^{(m)}$	$ $ c-fANOVA $f^{(c)}$
Main Effect f_i	$ F_{ m lin} $	$egin{array}{c} eta_i \cdot (x_i - b_i) \end{array}$	$egin{array}{c} eta_i \cdot ar{x}_i \end{array}$	$\int_{\lim}^{(m)} + \bar{x}_i \frac{\beta_j \sigma_{ij}}{\mathbb{V}[X_i]}$
	F_{2int}	$\int_{\rm lin}^{(b)} + \beta_{ij} b_j (x_i - b_i)$	$\int_{\rm lin}^{(m)} + \beta_{ij} \mu_j \bar{x}_i - \beta_{ij} \sigma_{ij}$	$\int f_{\text{lin}}^{(c)} + \beta_{ij} \bar{x}_i (\mu_j + \frac{\sigma_{ij} x_i}{\mathbb{V}[X_i]}) - \beta_{ij} \sigma_{ij}$
Interaction f_{ij}	$F_{ m lin}$	0	0	$\Big -\sum_{\ell \in ij} \bar{x}_{\ell} \frac{\beta_{-\ell} \sigma_{-\ell,\ell}}{\mathbb{V}[X_{\ell}]}$
	$F_{2\mathrm{int}}$	$eta_{ij}(x_i-b_i)(x_j-b_j)$	$eta_{ij}ar{x}_iar{x}_j+eta_{ij}\sigma_{ij}$	$\int_{2int}^{(m)} + f_{lin}^{(c)} - \beta_{ij}\sigma_{ij}(\frac{\bar{x}_i x_i}{\mathbb{V}[X_i]} + \frac{\bar{x}_j x_j}{\mathbb{V}[X_i]})$

Feature Influence via Cooperative Game Theory

Explanation Game:

 $u:2^D
ightarrow\mathbb{R}$

Möbius Transform:

m(S) = $\sum_{T\subseteq S} (-1)^{s-t}
u(T)$

Pure, partial and full effects capture higher-order Möbius coefficients differently

TRR 318

Captures Properties of $F_S(x)$

- **Prediction** for local explanations
- Variance or performance for global explanations

Captures Properties of $f_S(x)$

- **fANOVA effect** for local explanations
- Additive contribution to variance or performance for global explanations

Pure (ϕ^{\emptyset}) m(i)Partial ($\phi^{SV/GV/SI}$) Full (ϕ^+)

 $m(i) + \sum_{T \supset i} \frac{m(T)}{t}$ $m(i) + \sum_{T \supset i} m(T)$

Synthetic Experiments $F(x) = 2x_1 + 2x_2 + 2x_3 + x_1x_2 + x_1x_2x_3$

Software & Reproducibility

References

[1] Deng, H., Zou, N., Du, M., Chen, W., Feng, G., Yang, Z., Li, Z., and Zhang, Q. (2024). Unifying Fourteen Post-Hoc Attribution Methods With Taylor Interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(7):4625-4640. [2] Covert, I., Lundberg, S. M., and Lee, S.-I. (2020). Understanding Global Feature Contributions With Additive Importance Measures. In NeurIPS'20, pages 17212–17223. [3] Owen, A. B. (2013). Variance Components and Generalized Sobol' Indices. SIAM/ASA Journal on Uncertainty Quantification, 1(1):19-41. [4] Lundstrom, D. and Razaviyayn, M. (2023). A unifying framework to the analysis of interaction methods using synergy functions. In ICML'23, pages 23005–23032. [5] Bordt, S. and von Luxburg, U. (2023). From Shapley values to generalized additive models and back. In AISTATS'23, pages 709-745. [6] Hiabu, M., Meyer, J. T., and Wright, M. N. (2023). Unifying local and global model explanations by functional decomposition of low dimensional structures. In AISTATS'23, pages 7040-7060. [7] Covert, I., Lundberg, S., and Lee, S.-I. (2021). Explaining by removing: A unified framework for model explanation. Journal of Machine Learning Research, 22(209):1–90.

UNIVERSITÄT **BIELEFELD**

Munich Center for Machine Learning

