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Unifying Feature-Based Explanations with 
Functional ANOVA and Cooperative Game Theory

Probability Distribution P determines Imputation

● Baseline: baseline value

● Marginal: background data

● Conditional: realistic data

User Guide
1. Explanation game: local vs. global?
2. Explanation Type: individuals, 

groups (joint), or synergies 
(interaction)?

3. Imputation: feature distribution not 
(baseline), partially (marginal), or fully 
(conditional) captured?

4. Higher-order interactions: No (pure), 
partial, or full influence of higher-order 
interactions?

Global Functional Decomposition via fANOVA

Imputation Changes Influence of Feature Distribution

Feature Influence via Cooperative Game Theory

Explanation Game:

Synthetic Experiments

Pure effects Full effects

Real-world Applications
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Measuring Feature Influence by Perturbations

Feature of 
Interest

Pure

Perturbed

Present

Partial Full

vs.

Input

Imputation Methods for Perturbation

Value Function

Global Sensitivity Game for California Housing

Local Game on Sentiment Language Model

References

Captures Properties of 
● Prediction for local explanations
● Variance or performance for global 

explanations
Möbius Transform:

C
O

M
P

O
N

E
N

TS
U

N
IF

Y
IN

G
 F

R
A

M
E

W
O

R
K

E
X

P
E

R
IM

E
N

TS

Captures Properties of
● fANOVA effect for local explanations
● Additive contribution to variance or 

performance for global explanations
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fANOVA effect

yields 

Pure, partial and full effects 
capture higher-order Möbius 
coefficients differently

Disagreement and fragmented landscape of feature-based explanations: Interpretation and comparison of 
feature-based explanations are unclear leading to confusion among practitioners.
Existing frameworks are limited by focusing on local [1] or global explanations [2,3], specific methods [4-6] or influences 
of single features [7].P
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