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GraphSHAP-IQ

Contribution Summary

ØThe molecule on the left has 30 atoms (graph with 30 nodes). Computing exact 
explanations (no approximation) requires 230 ≈ 1,000,000,000 model calls.

ØGraphSHAP-IQ needs only 7,693. 🚀

Empirical Results

Background
The Graph Game transforms a GNN 
for graph-level prediction into a 
cooperative game by masking nodes: 

with

and

Game:

Möbius Interactions         are the basis of explanations:

and they recover

Shapley Values and Interactions summarize/aggregate the Möbius 
interactions into lower-order explanations. 

A Graph Neural Network (GNN) makes prediction for a graph g:

with
: output layer
: pooling function

“only masking within 
the receptive fields 

matter”
Theorem 3.3

References

Ø less dense graphs 
are easier to compute

Ø GrapSHAP-IQ scales near-linearly with graph 
size making exact computations feasible
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Baselines

Ø GraphSHAP-IQ’s runtime is 
independent of  interaction order

Ø interaction-informed baselines 
(knowledge about which Möbius 
interactions are zero) improve 
approximation performance

Example Detecting Benzene Rings:

Why is Pyridyne no Benzene?Q:
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Why is this larger molecule 
a Benzene?Q:
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Möbius Interaction
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Möbius Interactions
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linear, e.g. sum or meanΨ

σ
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linear, e.g. dense layerσ:= xi
( )T xi := xi

( )T

Assumption

Proposition 3.6

“most Möbius 
interactions are 

zero for graph-level 
GNNS”

Node-Level Results:

Graph-Level Results:

Theorem 3.7

“complexity is 
bounded by the 
receptive field”
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For full references, see our accompanying paper.

Paper:

Check out our other work:

SoonTM in shapiq!

TL;DR: Most Möbius interactions are zero for graph-level 
prediction tasks with GNNs, allowing for exact computation of 
Shapley Values and Interactions. 

Ø Shapley Values measure feature attribution of nodes
Ø Shapley Interactions measure synergy between nodes

See the paper for deep redout!


