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Models in Flux: Incremental Learning from Data Streams
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Various applications: Bifet and Gavalda (2007), Gama et al. (2014), Davari et al. (2021), etc.
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Examples of Models in Flux

Fraud Sensor Automotive Predictive
Detection Networks Industry Maintenance

O consmuenn Images generated with Leonardo.ai.
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https://app.leonardo.ai/

Model-Agnostic Explanations with Global Feature Importance

Prediction of Hospital Admission
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Permutation Feature Importance (PFI)
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Permutation Feature Importance (PFI)
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Permutation Feature Importance — (Empirical) PFI

Sample permutations 1, ..., @p uniformly and compute loss increase gzbfp i) =L, — Lig
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Theoretical Properties of PFI

Global Feature Importance (Global Fl) of a feature (set) S;
Let fs, (x(3),y) == E [||h(x(51>,x<5f)) - y||}, then global Fl is defined as
6 (h) =B x,v) [f5,(X), V)] = By [[11(X) = V]

marginalized risk over S; risk
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Theoretical Properties of PFI

Global Feature Importance (Global Fl) of a feature (set) S;
Let fs, (x(3),y) == E [||h(x(5f>,x<5f>) - y||}, then global Fl is defined as
6 (h) =B x,v) [f5,(X), V)] = By [[11(X) = V]

marginalized risk over S; risk

Model Reliance Fisher, Rudin, and Dominici (2019)
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B is a U-statistic, in particular an unbiased estimator of global FI
W is asymptotically Normal with finite sample boundaries
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Theoretical Properties of PFI

Theorem (PFI and Model Reliance are directly linked)
Model reliance is the expectation of PFl over uniformly drawn permutations:

N

—(s. ~(S ~(S;
9 = Eprunien 6] = 57 Epmunition) [#5”)] -
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Theoretical Properties of PFI

Theorem (PFI and Model Reliance are directly linked)
Model reliance is the expectation of PFl over uniformly drawn permutations:

N

—(s. ~(S ~(S;
9 = Eprunien 6] = 57 Epmunition) [#5”)] -

PFI ¢(3) variant of Breiman (2001) Expected PFI ¢(9) = E_[¢(9)]

B Easy to compute in O(N) B Hard to compute in O(N?)

B Difficult to analyze theoretically due B U-statistic with theoretical guarantees
to dependence on permutations Fisher, Rudin, and Dominici (2019)

B Used for computation B Used for theoretical analysis
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Incremental Permutation Feature Importance

(iPFI)

Towards Online Explanations on Data Streams
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Incremental PFI for Online Learning

Online Learning on Data Streams

B Unlimited data stream (xo, Y0), - - -, (X, ¥t), - - -
B Incrementally updated model: h;y; < incrementalUpdate(hy, x, yt)

Static Permutation Tests

S S 5
S S Zuh $2,2 80 — wall — l(wn) — gl

k At time ¢ with (2, y;) and model h,

Stochastic Sampling Strategy Replacement with previous Observations

o 2 —{0,...,t —1} Hht( amg(m )~y
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Incremental PFI for Online Learning

Online Learning on Data Streams

B Unlimited data stream (xo, Y0), - - -, (X, ¥t), - - -
B Incrementally updated model: h;y; < incrementalUpdate(hy, x, yt)

Calculation at time t Initial Computation
~ S
N @200 0) = alel™, 20) — wall — Ialer) — B = 0fort > 10> 0
Incremental Update of iPFI Smoothing Parameter
AESJ') =(1-a)- (S) I+ o /\(S )(mt,:ew,yt) ac(0,1)
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iPFI — Algorithm lllustration
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Similar Computational Complexity
at time t
explain one
observe (m, v,) one static PF| score
sample z; all anytime iPFI scores

compute metric }gt
update feature importance dA)t

update reservoir ¢,.; with z,
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iPFI — Theoretical Guarantees in Static Environments

Expected iPFI

With a (stochastic) sampling strategy ¢ := (¢s)s=t,,....t, we define

Expected iPFI: <Z_>(t5f) — Ew[qgg%)].

Theorem (Static Model and (X, Y;) ~ P(x,v))
If h= he and V[||A(XE, XY = Y|l = |A(Xs) — Ys|[] < oo, then

o (h) — E[6¢”)] = (1 — )~ *+16(3)(h) (bias)
\% [tlngo gﬁﬁsf)] = O(—alog(w)) (uniform sampling)
\% [tILrQO QEESJ)} = O0(a) + O(1/L) (geometric sampling)
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iPFI — Theoretical Guarantees in Dynamic Environments

Controlling Change in Dynamic Environments
We define a measure of change between two timesteps tyg < s < t as
FE (XD, b, he) 1= B, [IlAe(x1), X) — hs(x, X))
As(hs, hy) = EX[fSA(X, hs, ht)] and A(hs, ht) := Dg(hs, he).

Theorem (Changing Model and (X, Y;) ~ P(x v))

If A(hs, hs) <6 and Ag(hs, ht) < ds for tg < s < t and finite covariances, then

[EI3E™] — 6D (he)| < 65+ 6+ O((1 - a)) (bias)
\% Lll}rgo &ﬁsf)} = O(—alog(w)) (uniform sampling)
A% {tlrgo qz_bgsj)} = O(a) + O(1/L) (geometric sampling)
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iPFl vs. Interval PFI for Concept Drifts
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Conclusion & Outlook
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Conclusion

Permutation Feature Importance

B (Empirical) PFI as a variant of permutation test (Breiman 2001)
B Expected PFl as model reliance (Fisher, Rudin, and Dominici 2019)
B Expected PFl is the expectation of PFI over uniformly sampled permutations

Incremental Permutation Feature Importance (iPFl)

B We introduce online explanations for online learning on data streams

B We propose an efficient incremental computation of PFlI

B iPFI efficiently reveals model and distribution changes over time

H iPFI is supported by theoretical guarantees in controlled environments
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The Road Ahead and Open Source Implementation

Towards Explaining Change

B iPFl is a model-agnostic XAl method to
compute global Fl for models in flux.

B Online XAl approaches include iISAGE (to-
day at 16:30-18:30 here in room Fucine)

and iPDP (xAI'23).
‘5@ Installation
Workshop Friday Afternoon Slot

B Time: 14:00-18:00

B Room: PoliTo Room 10i

B Title: Explainable Artificial Intelligence:
From Static to Dynamic
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Explanation Procedure

General Explanation Algorithm

Algorithm 6 Incremental explanation procedure

Require: stream {,y:},-,, model f(.), loss function £(.)
1: for all (x¢,y:) € stream do

2: gt “— ft (Il't)

3:  ¢¢ < explain_one(w,yt)

4:  fi41 < learn_one(L(T¢, yt))

5: end for

B Similarly to the prequential training, we explain models prequentially.

B Data points are used first for explanations (model has not seen the observation, line
3) and then the model is allowed to use it for training (line 4).
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Computational Complexity

data ‘ stagger elec2 agrawal adult  bank insects ozone
feature count 3 8 9 14 16 33 72
explanation 0.734 1210 1411 1976 2386 5.070 7.717
time (.017) (.039) (.020) (.118) (.048) (.078) (.182)
inference 0.959 0989 0.987 0991 0.991 0.990 0.998
time (.001) (.002) (.001) (.002) (.001) (.021) (.000)

Table 1: Summary of the additional time complexity of iPFl. The additional explanation time is
given relatively to the case where the models are trained without explaining. The inference time
denotes the portion of the explanation time in which the models are queried. All values for each
dataset are derived from ten independent runs. The run time of iPFI scales linearly with

0.104 - |D| over the number of features (R*> = 0.966).
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Uniform vs. Geometric Sampling

iPFI - data: elec2 (feature-drift), a: 0.001)

uniform sampling geometric sampling
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Geometric Sampling for Feature-Drift

If feature distributions change, then geometric sampling should be preferred.
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Parameters

[} [

§ Sensitivity to a § Sensitivity to reservoir length
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Choice of Smoothing Parameter «

The choice depends on the application. We recommend
a = 0.001 (conservative) and av = 0.01 (reactive).
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