Maximilian Muschalik¹, Hubert Baniecki², Fabian Fumagalli³, Patrick Kolpaczki⁴, Barbara Hammer³, and Eyke Hüllermeier¹

and Imputers

1) LMU Munich

2) University of Warsaw and Warsaw University of Technology

3) Bielefeld University

shapiq: Shapley Interactions for Machine Learning

want to use Shapley values for other ML applications. How do I compute them?

Game Theory for General ML Applications

Any Value Function (as a callable) $u:\mathcal{P}(N)
ightarrow\mathbb{R}$

shapiq includes: > 20 concepts (Shapley value and interactions, Banzhaf value and interactions, Faithful Shapley, Generalized values, Möbius, Core, ...) > 14 state-of-the-art approximators and exact computers

import shapiq class CountGame(shapiq.Game): def __init__(self, n_players): ... def value_function(coalitions): # define the worth of a coalition return np.sum(coalitions, axis=1) game = CountGame(n_players=12) # approximate SIs with KernelSHAP-IQ approx = shapiq.KernelSHAPIQ(n=12) si = approx(game=game, budget=1000) # compute the Moebius transform exactly exact = shapiq.ExactComputer(game, 12) mi = exact(index='Moebius') print(si[(3, 7)], mi[(3,)]) # get values

Evaluation of Approximators on the Benchmark

Benchmark of **11** ML domains (e.g., explanation, data valuation, uncertainty quantification, ...)

Games: 100 benchmark games with more than **2000** pre-computed configurations

DFG Deutsche Forschungsgemeinschaft German Research Foundation

mmschlk/shapiq PR Welcome!

Class	Shapley Interactions	Shapley Values
Approximator	KernelSHAP-IQ	KernelSHAP
	Inconsistent KernelSHAP-IQ	$k_{\text{ADD}} ext{-SHAP}$
	Faith-SHAP	Owen Sampling
	SHAP-IQ	Unbiased KernelSHAP
	SVARM-IQ	SVARM
	Permutation Sampling (SII)	Permutation Sampling (SV)
	Permutation Sampling (STII)	Stratified Sampling
Computer	Möbius Converter	
	Exact Computer	